### В. А. Бекмурзаев,

кандидат технических наук, начальник отдела Управления профориентации, приема и трудоустройства ФГБОУ ВО «МГТУ «СТАНКИН»

## И. С. Третяк,

заместитель начальника Управления профориентации, приема и трудоустройства ФГБОУ ВО «МГТУ «СТАНКИН»

## Как чертеж помогает при решении задач\*

Продолжаем публикацию решения задач при помощи чертежей. В статье рассмотрены доказательства и решения различных задач с геометрическими фигурами.

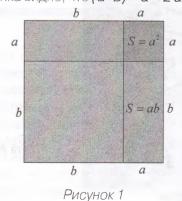
Ключевые слова: рисунок, чертеж, квадрат, теорема Пифагора, окружность.

Древнегреческие математики в своих логических рассуждениях часто использовали язык геометрических фигур. Особенно ярко это отражено в эвклидовых «Началах» (III век до нашей эры). Вторая книга этого труда посвящена алгебраическим тождествам, изложенным на языке геометрии.

**Задача 1.** Привести геометрическое доказательство тождества  $(a+b)^2=a^2+2ab+b^2$ .

**Решение.** Построим квадраты со сторонами a, b и b+a так, чтобы они имели общую вершину (рисунок 1). В результате получим, что внутри квадрата со стороной a+b находятся два квадрата со сторонами a и b и два прямоугольника со сторонами a и b.

Из рисунка видно, что  $(a+b)^2=a^2+2ab+b^2$ .



\* (Продолжение. Начало см. в № 1 2017 г., стр. 60 журнала «Техническое творчество молодёжи»)

**Задача 2.** Докажите, что  $\angle A + \angle B + \angle C = 90^{\circ}$  (рисунок 2).



Рисунок 2

**Решение.** Построим на данной фигуре прямоугольник, состоящий из двух квадратов, как на рисунке 3.

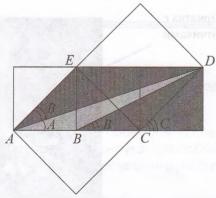


Рисунок 3

Рассмотрим  $\triangle AED$  и  $\triangle BCD$ . В них  $\angle AED = \angle BCD = 135$   $^{\circ}$ ;  $ED = CD \cdot \sqrt{2}$  и  $AE = BC \cdot \sqrt{2}$ . Значит они подобны и, следовательно,  $\angle EAD = \angle DBC = \angle B$ . Итак,  $\angle A + \angle B = 45$   $^{\circ}$ , а  $\angle C = 45$   $^{\circ}$ . Окончательно  $\angle A + \angle B + \angle C = 90$   $^{\circ}$ , что и требовалось доказать.

В своем труде «Венец учения» индийский математик Бхаскара Ачарья (1114–1178) привел чертеж (рисунок 4), под которым поставил подпись из одного единственного слова: «Смотри!».

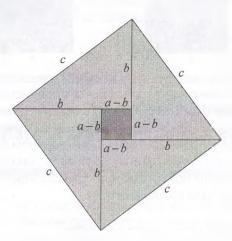


Рисунок 4

**Задача 3.** Глядя на этот чертеж, выразите площадь квадрата  $c^2$  через стороны прямоугольных треугольников со сторонами a и b (a > b).

**Решение.** Имеем  $c^2=4\cdot (ab)/2+(a-b)^2$  или  $c^2=a^2+b^2$ .

Результат выражает утверждение теоремы Пифагора.

**Задача 4.** Дайте геометрическое доказательство тождеству  $2 a^2 + 2 b^2 = (a+b)^2 + (a-b)^2$ .

**Решение.** Построим квадрат со стороной a+b, а в двух противоположных углах построим квадраты со стороной a (рисунок 5).

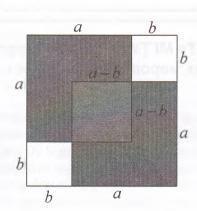


Рисунок 5

Два закрашенных квадрата площади  $2a^2$  вместе с двумя белыми квадратами  $2b^2$  составляют большой квадрат. К площади следует добавить, из-за наложения закрашенных квадратов, площадь маленького темного квадрата. Итак,  $2a^2+2b^2=(a+b)^2+(a-b)^2$ .

**Задача 5.** Найдите отношение между элементами прямоугольной трапеции *ABCD*, осно-

вания которой равны a и b, углы A и B — прямые, а высота равна a+b (рисунок 6).

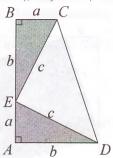


Рисунок 6

**Решение.** Пусть точка E делит высоту трапеции на части длиной a и b. Соединим точку E с вершинами C и D. Имеем EC=ED=c.

Площадь трапеции равна  $S_{ABCD} = (a+b)/2 * (a+b) = (a^2+2ab+b^2)/2.$ 

 $\Delta CED$  — прямоугольный,  $\angle CED = 90$   $^{\circ}$ .  $S_{\Delta CED} = (EC \cdot ED)/2 = c^2/2$ .  $S_{ABCD} = ab/2 + ab/2 + c^2/2$ .

Приравнивая два выражения для площадей, получим  $(a^2+2ab+b^2)/2=ab+c^2/2$  или  $(a^2+b^2)/2+ab=ab+c^2/2$ , отсюда  $a^2+b^2=c^2$ .

Тем самым получили очередное доказательство теоремы Пифагора.

В древнеиндийских математических текстах часто встречаются чертежи, под которыми написано только «Смотри!».

На рисунке 7 представлено еще одно доказательство теоремы Пифагоры.

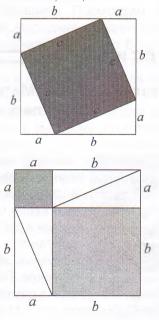


Рисунок 7

Один и тот же квадрат разрезается на части двумя способами. Треугольники слева и справа равны и тогда левый квадрат слева равновелик двум квадратам справа.

В древнем китайском трактате «Математика в девяти книгах» (Il век до нашей эры) приводится такой чертеж, доказывающий теоремы Пифагора.

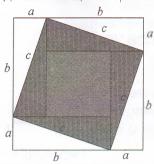
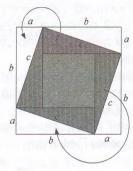
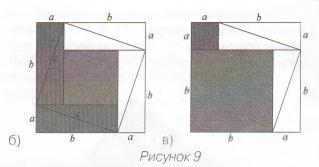


Рисунок 8

Доказательство теоремы приводится на рисунке 9. Сначала два прямоугольных треугольника перемещаются в соответствии со стрелками (рисунок 9 а). Получаем чертеж (рисунок 9 б). Затем выделяем на нем два квадрата со сторонами a и b и получаем рисунок 9 в. Итак,  $c^2=a^2+b^2$ .





Древнегреческие и древнеиндийские математики показали важность использования чертежей при доказательствах математических теорем и соотношений. В современном мире эта важность не утратила своей силы, также остает-

ся актуальной, особенно при изложении нового

материала школьникам.

#### Библиографический список

- 1. *Мышенков К. С., Посевин А. К.* Методика оптимизации сайтов для поисковых систем//Вестник МГТУ «СТАНКИН». 2015. № 4 (35). С. 123-127.
- 2. Буренок Я. С., Уварова Л. А. Моделирование распространения поперечных волн в малых частицах цилиндрической геометрии с нелинейными свойствами//Вестник МГТУ «СТАНКИН». 2016. № 3 (38). С. 82 86.
- 2. Трубаев А. С., Рябов С. А., Иванова Н. А. Анализ систем моделирования применительно к плоскому и трехмерному созданию чертежей//Вестник МГТУ «СТАНКИН». 2016. № 1 (36). С. 68 70.

НОВОСТИ

a)

# В рамках выставки «Металлообработка-2017» МГТУ «СТАНКИН» проведет комплекс научно-технических мероприятий



15 мая 2017 года в Экспоцентре на Красной Пресне состоится торжественное открытие 18-й международной специализированной выставки «Металлообработка-2017», участие в которой примут более 1000 экспонентов из 35 стран мира. В выставке традиционно примут участие ведущие отечественные и зарубежные производители станкоинструментальной техники и оборудования, а также будут представлены 10 национальных масштабных выставочных экспозиций из Белоруссии, Германии, Испании, Италии, Китая, Словакии, Тайваня, Швейцарии, Франции и Чехии).

17 и 18 мая 2017 года в рамках деловой программы выставки «Металлообработка — 2017» МГТУ «СТАНКИН» проведет II Международную школу молодых ученых и специалистов в области робототехники, производственных технологий и автоматизации. В работе международной школы примет участие широкий круг молодых ученых и специалистов из самых различных регионов России, а проведут школу специально приглашенные авторитетные европейские ученые. Талантливым молодым ученым в рамках выставки будет предоставлена дискуссионная площадка и возможность презентации собственных исследований и разработок.

Подробная информация на www.stankin.ru